New algorithms for exact and approximate polynomial decomposition

نویسندگان

  • Mark Giesbrecht
  • John May
چکیده

Computing a decomposition of a polynomial f(x) as a functional composition g(h(x)) of polynomials g(x) and h(x), is an important and well-studied problem, both for exact and approximate inputs. In this paper, we re-examine the original (exponential-time) algorithm of Barton and Zippel for this task, which looks for special factors of an associated separated bivariate polynomial. We demonstrate algorithms using this approach which are reasonably fast (i.e., run in a polynomial number of operations) for exact computation, and provide an effective new approach for the decomposition of approximate polynomials. For approximate polynomials we exhibit rigorous lower bounds on the distance to the nearest decomposable polynomial, as well as robust numerical algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

Numerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method

In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.

متن کامل

QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines

We describe polynomial–time algorithms that produce approximate solutions with guaranteed accuracy for a class of QP problems that are used in the design of support vector machine classifiers. These algorithms employ a two–stage process where the first stage produces an approximate solution to a dual QP problem and the second stage maps this approximate dual solution to an approximate primal so...

متن کامل

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

متن کامل

On Exact Polya and Putinar's Representations

We consider the problem of finding exact sums of squares (SOS) decompositions for certain classes of non-negative multivariate polynomials, relying on semidefinite programming (SDP) solvers. We start by providing a hybrid numeric-symbolic algorithm computing exact rational SOS decompositions for polynomials lying in the interior of the SOS cone. It computes an approximate SOS decomposition for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005